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Abst rac t - -The  objective o f  this study is to develop a local two-fluid model for the separated two-phase 
flow pattern, usually referred to as stratified flow. Previous models considered the stratified flow pattern 
as a superimposition of  two single-phase flows. However, this assumption is valid for the cases in which 
the amplitude interfacial waves are small compared to the liquid thickness. In this paper, we propose a 
complementary approach for the case of  thin films in comparison to the wavy region. In this case, a local 
two-fluid model accounting for the distribution of  the two phases is necessary. The paper is based on one 
such local model of  the separated two-phase flow pattern. Since the model does not predict the shape of  
the gas-liquid interface, we assume it is known a priori. The model accounts for the wavy surface and 
the interfacial transfer of  momentum;  this transfer can be induced both by pressure and viscous stress 
distributions along the wavy gas-liquid interface. 

In the first part the mathematical  development to establish the local two-fluid model of  separated 
two-phase flow is presented. In the second part, the adequacy and advantages of  simplifying the wave 
field by assuming a monochromat ic  dominant  wave are considered. The closure conditions for the model 
are also presented, lnterfacial terms of momen t um transfer are shown to account for both the shape of 
the gas-liquid interface and for the distributions of  stresses over it. 

The key feature of  the two-fluid model lies in the transfer of  momen tum at the wavy gas-liquid surface. 
The transfer of  momen t um at the gas-liquid interface raises two issues: the first is the deformation of  
the gas-l iquid interface, the second is the distribution of the stresses over a wavy boundary (pressure and 
viscous stresses). The generation of waves, their deformation and propagation are beyond the scope of  
this work. In the second part of  this paper, our goal is to adequately predict the effect of  the distribution 
of  the stresses over a wavy boundary for a given shape. In particular, the weight of  the pressure term 
in the transfer o f  interfacial m o m e n t u m  is estimated. © 1997 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Recent works on the two-fluid model in two-phase flows are mostly aimed at the dispersed flow 
pattern. However, separated two-phase flow behaviour is far from being understood. In particular, 
the momentum transfer between gas flow and a wavy liquid film is poorly predicted. 

Two kinds of stratified flow model have been developed in the past: a global model and a 
complementary local approach. The objective of the global models is to calculate the pressure drop 
and the phase distribution in a stratified flow pattern in pipes. In one of the earlier developments 
of stratified flow models, Taitel and Dukler (1976) have proposed a model based on continuity 
and momentum equations for each phase, averaged over the pipe cross-section. Such a global 
approach can give useful information for applications, in particular for the design of pipelines for 
hydrocarbon transport in the oil industry. These models have been reviewed in recent papers 
(Jayanti 1991, Lin~ & Fabre 1996). It can be shown that the distribution of the phases results from 
momentum transfers at the pipe wall and at the interface between gas and liquid. 

The closure problem is based on the modelling of momentum transfer coefficients at the wall 
and at the interface. Closure laws proposed by Andritsos and Hanratty (1987) result in a reliable 
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global model. However, in the general review of Hanratty and McCready (1992), work on 
two-phase flow highlights the necessity of better understanding of small-scale interactions to 
improve the description of macroscopic behaviour. Hence, a complementary approach lies in the 
local modelling of two-phase stratified flow. 

Several researchers have assumed that separated two-phase flow can be well represented 
by the superimposition of two single-phase flows separated by a fiat interface. Akai et al. 
(1981) have proposed a local one-dimensional numerical model of stratified flow, to calculate 
the vertical profiles of longitudinal velocities in the gas and in the liquid, for steady-state 
and fully-developed flows. In their work, the authors solve a two-equation, low-Reynolds 
number model of turbulence, previously developed for single-phase flow by Jones and 
Launder (1992). This model is applied both to the gas and liquid simultaneously. However, 
the authors simplify the problem by considering an equivalent flat interface between gas and 
liquid: the equivalent interface accounts for the wavy two-phase flow region and the local 
interactions in this region. They impose specific boundary conditions on the interface. The applied 
boundary conditions provide a minimal physical relationship to physical information on 
the transfer of momentum at the gas-liquid boundary. In a similar approach, Issa (1988) 
has developed a 2-D numerical model of turbulent-turbulent stratified flow outside the wavy 
region by extrapolating the (k, g) model of turbulence developed for single-phase flows. In a 
recent paper, Lin6 et al. (1996) presented a refined model for 3-D separated two-phase 
flow accounting for wave-mean flow interactions. The problem was solved outside the wavy 
region. The direction of turbulence modelling both above and below the waves remains 
unanswered. 

The above mentioned approaches consider the superimposition of two single-phase flows. 
As mentioned earlier, this assumption is restricted to the case in which the wave region is 
small compared to the liquid thickness. In this paper, we propose a complementary approach 
in the case of thin films with relatively large wavy region. The present approach is based on 
local modelling of the separated two-phase flow pattern. Our formulation is based on the 
instantaneous local Eulerian equations of two-phase flows that are applied in the general 
frame of gas-liquid separated flows. The development is restricted to the particular case of stratified 
flOW. 

The primary objective of this paper is to establish the local two-fluid model and to analyse its 
ability to determine the unknowns of the problem: pressure, velocity fields and distribution of the 
phases. The second objective is to estimate the linear perturbation caused to the gas flow by 
the wavy interface. Since only linear perturbations are considered here, it seems sufficient to 
analyse the flow over a sinusoidal waveform. Given the deformation of the surface, we can express 
both the vertical profile of the phase fraction and the geometric parameters of the interfacial 
terms of momentum transfer. The balance equations for the two-fluid model are thus formulated. 
The contributions of the interfacial transfer of momentum along a given deformation interface 
appear explicitly in the momentum equations. A proposal to correlate the interfacial transfer due 
to the pressure variation with a form drag coefficient is presented. In conclusion the determination 
of phase distribution as governed by the momentum balance is also presented. Additional 
phenomenological relations are needed to deduce the geometrical characteristics of the waves from 
the volume fraction of the phase. 

2. WAVY SEPARATED TWO-PHASE FLOW MODEL 

The derivation of the two-fluid model is presented below. The local momentum balance is 
written in a general form. A simplified steady-state and fully develop flow model is then expressed, 
which will be discussed in a later section. The equations are finally cross-averaged to relate the 
global and local closure problems. 

2.1. Basic equations of  motion in two-phase flow 

The objective of this paragraph is to define the variables commonly used for the local two-fluid 
model (Ishii 1975). In multiphase flows, the variables are continuous in the individual phases 
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Figure 1. Definitions of stress, unit normal and unit tangential vectors at two geometrical locations having 
the same ordinate on the wavy interface and associated phase indicator function in the liquid. 

but can be discontinuous at the interface. Therefore, a phase indicator function for each phase k 
must be introduced (figure 1): 

g k ( x , t ) = l  if (x , t )  e p h a s e k  [1] 

gk (x ,  t)  = 0 otherwise 

The phase indicator function for each phase k is continuous in the individual phases and 
discontinuous at the interface. The "mater ia l"  derivative at the interface gives: 

c~Z k 8Z* 
a~ + L,; ~ = 0 [21 

where U ~ is the velocity of  the interface. From geometrical consideration, one can write: 

8Z___~ ~ = --  nk 6 ~ 
8X ' , [3] 

where n k is the unit vector normal to the interface and 6 ~ is the Dirac delta function. 
The averaged variables are defined in each phase by: 

~ * ~ = Z  kV~ and ~kpk=Z,pk  [4] 

where V ~ is the velocity, p ,  the pressure, pk the density and v k the kinemative viscosity of  phase 
k respectively. Multiplying the Navier-Stokes equations by the phase indicator function and 
averaging leads to the classical form for the equations of  motion in two-phase flow: 

(~o~k~T -}- ao~k~axj = - -  (V~/. - -  U ~ / ) , k ~  i [ 5 a  & b ]  

with the jump conditions: 

p C ( ~  _ ~ ) n O 6 ~ +  pL(~L _ ~ ) # 6 ~  = 0 and pCL----~ - -  • / + p L L ~ = O  [5c&d]  

where the average of  the phase indicator function is the volume fraction of  phase k: 

~* = Z* [6] 
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In addition, one can derive: 

a~k - aZk - -- n~6 ~ [7] 
gx~ 0xj 

The last term on the right-hand side of [5b], Ly, represents the averaging of the interfacial 
momentum transfer. It requires further manipulations. The last term, Ly, accounts for interfaciai 
transfer of momentum and is written as follows: 

k{'~V__~ a ,,'~7n, ai k{'OV~nm6 g<,n )6~  
Ly = -- l/y(V:k,,- U~,,)nk,,fi ' -  P~6,,,,- la ~,ax,, + ~~j/l_] "' + v ~ c~x, ' + ~3x,, 1 [81 

[5] and [8], previously derived by Lance et al. (1979), are the basis of any two-fluid model. 
In the past, the two-fluid model has only been applied to the dispersed two-phase flow pattern. 
In this study, it will be applied to the separated two-phase flow pattern. 

In the regions above and below the waves, there are no interface and no gradient of phase 
fraction: single-phase flow can be observed. In the two-phase flow region, the phase fraction 
varies from one to zero and interfacial transfer occurs. The right-hand side of  [5b] accounts for 
the interfacial transfer of mass and momentum: it has to be modelled. In a first analysis of the 
two-fluid model in separated phase wavy flow, we will focus on the closure of the viscous stress 
and pressure terms in the interfacial transfer. 

The second term of [8] can be further expanded as follows: 

Pka""-  P ~ax°, + aX, ) J  m , -- r,kny + [9] 

In the left-hand side of [9], the instantaneous stress vector is expressed with respect to a global 
frame of reference (figure 1). The right-hand side of the equation is expressed with respect to the 
normal and tangential unit vectors at the interface (figure 1). Some manipulations are needed to 
better understand the physical meaning of these terms. 

In the case of a flat interface, the normal unit vector components are (n~ = 0, n2 = 0, n3 = 1) and 
the tangential unit vector components are (tl = 1, t2 = 0, t3 = 0), Hence, in the longitudinal 
momentum balance equation (in the xl direction) there remains only the tangential viscous stress 
term. In the vertical momentum balance equation (in the x3 direction) there remains only the 
normal viscous stress term and the pressure. In the case of a wavy interface, some manipulations 
are needed to better understand the physical meaning of these terms. 

2.2. Transformation o f  the pressure terms in the momentum balance 

Consider first the pressure terms in the right-hand side of [4]: 

1 &~pk 1 
Pry = pk aX, pk pkny 6~ [10] 

Given pror, a reference value on the pressure, one can derive: 

~ k  
- -  p re f  nkaip~¢r [11] 
~ X j  ~ - -  J 

which can be grouped and transformed as: 

cd c~P k 1 &x k (p~ _ p,or) _ 1 pref)ny6~ 
Pr~ = pk C3Xi pk OXj -~ (pk __ [12] 

(i) (ii) (iii) 

where: (i) is a classical pressure gradient in phase k; (ii) accounts for the difference between the 
local phasic pressure and a reference pressure; (iii) accounts for the difference between the local 
interracial pressure and the reference pressure. 

If we simplify the problem by considering a one-dimensional problem of steady-state 
fully-developed (in the x~ direction) separated two-phase flow, the longitudinal momentum 
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equation enables us to calculate the vertical profiles of  pressure and longitudinal velocity. At a given 
vertical ordinate x~, the preceding term can be written as: 

ak ap ,  1 k Prf = pk ax, pk (P -- P~f)nf~i [13] 

where pk is the local value of  the pressure after averaging over a set of  measurements taken in 
the phase k at the ordinate x3, and pk is the local instantaneous value of  the pressure taken each 
time that the gas-liquid interface crosses the ordinate x3 during the ensemble averaging operation. 
At any given time, the interfacial pressure has a different value and the shape of  the interface 
is different: i.e. during each measurement the unit normal vector perpendicular to the interface 
has a particular orientation. Term (iii) accounts for both the modulus of  pressure and the 
orientation of  the unit vector. 

An initial attempt to define the reference pressure would be to choose the overall average of  the 
modulus of  pressure taken each time that the gas-liquid interface crosses the ordinate x3: 

pr~r= pkgi [14a] 

In the proposed, we will consider the separated flow pattern and assume a sinusoidal perturbation 
of  the interface. It seems useful to choose as reference pressure the mean value of the pressure 
along the interface: 

The pressure term can be written as: 

~t k ap  k 
Pr~ = pk axj 

pref= (e , )  [14b] 

1 Dad (p~ _ (p,)) _ ~ 
pk axj 

Each term of  the momentum balance equation can be expressed in the same way. 

[151 

2.3. Expression of  momentum balance in separated two-phase flow 
After a series of  mathematical manipulations, the momentum balance in separated two-phase 

flow can be written as follows: 

L at + ax.,  + p. ~ ax., kay°, + ax, / - ax., J 

+, at+(v~vl . Rm~)~x.+y(~ <P' z'o>)ax ~ ax~ ~ - - -  - -  \ - - ~  ( z , ) t ) 3  
ax,, axj J 

] 
-e (~-<~>)-~+(~-<v,,.>)o~. J- Lax," ax,. +ax, ax,. l 

1 vk(OVjn,,6 0 ~  [16] 
ax,, / 

In this equation: (i) for the volume fraction ~k of  phase k times the equivalent single phase flow 
equation; in the regions above and below the waves, the value of  the volume fraction ~k is one 
and thus reduces the equation to its single-phase form; (ii) the second part of  the left-hand 
side contains both averaged variables and derivatives of  the volume fraction of  phase k. Given the 
shape of  the gas-liquid interface, each term can be evaluated. The mean values of  both pressure 
and viscous stress along the interface ((P~ ~ - z , ) ( z t ) )  do appear explicitly; (iii) the right-hand side 
of  the equation accounts for the interfacial transfer of  momentum due to the mass transfer as well 
as the pressure and viscous stress perturbations along the interface [-Fn]6 ~ -  g,n-~ - f,t~6~] • 

The turbulent terms ~0 in [16] require additional closure terms to adequately model the 
turbulence phenomena. In this paper, the turbulence problem is not studied. Attention is restricted 
to the interfacial transfer terms in wavy separated two-phase flows. 
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2.4. I-D local model of  separated two-phase flow 

In order to simplify the analysis, we can consider a one-dimensional problem corresponding 
to steady-state fully-developed (in the x~ direction) separated two-phase flow without mass 
transfer. The unknowns of the problem are then the vertical profiles of longitudinal velocity 
V~(x3), pressure pk(x3), the distribution of the phases ~k(x3) and the longitudinal pressure 
gradient. The closure problem is once more related to the interfacial terms of momentum 
transfer which are required to express the shape of the interface and the distributions of  interfacial 
stresses. 

The longitudinal momentum equation can be written as: 

Otk~ ! O~Lpk-~Xi Yk (~2"~ll~x3 63R~1023 gl -- ~ ' -  |Y(~oCkFk(~l-ff~3+~3J -- -~ (Zl)t~ ~2i -- vk (~  -- (V~I)) OX23 

yk O(~k [~(V~ - -  (Vl | ) ) )  pk [ ~  - -  "~nF/k(~i - -  "~tt~ (~i] + ~, OX 3 -~- ~X3 J [17] _ _ Vk|C vin~o" 
0x3 0x3 

The vertical momentum equation writes then as: 

1 0 P  k ~R3k3 t~k  -I- "~3k3 1 - -  "zin "" (~(~k 1 
~ p* ~x~ ~x~ g~ -~x3 7 (~-(P'>+~ >;a-Z p,<-e,>t~6' 

02~ k 0c(' 0(1~35) _ l [ ~  - f°n~f~ - f,66'] + 2vk O~n~6' [18] 
+ 2vk(V~3) ~ + 2v~ 8x3 8x3 p~ 0x3 

2.5. Cross-averaged model of  separated two-phase flow 

In many industrial applications, cross-averaged models are used. Cross-averaging the equations 
and unknowns over the section of the pipe, we define the new variables: 

1 e~da and EkV~~=~ c(k~da [19] 

We consider a steady-state fully-developed (in xt) separated two-phase flow without mass transfer. 
After simplifications relative to fully-developed and steady-state stratified flow, the longitudinal 
balance equation of momentum can be written as: 

0~-~ SWkrk---~ S,~k--7 S~x~--~ 
E ~ = Ekpkg, + ~ + ~ -  A [201 

where z k~ is the mean shear stress at the wall wetted by the phase k on the perimeter Swk; Z k~ is 
the mean shear stress at the interface on the perimeter S~; and rt k~ is the normal stress contribution 
(pressure - normal viscous stress) at the interface on the perimeter SL 

Usually, only the first term of interfacial momentum transfer is considered. This term is exact 
only if the gas-liquid interface is flat. The longitudinal component of the interfacial stress vector 
corresponds to the interracial shear stress. But, with the presence of the waves, the averaged 
value of  the interfacial distribution of  stress vector can have a longitudinal component which 
accounts both for viscous stress and pressure contributions. 

3. PARTICULAR CASE OF MONOCHROMATIC WAVY INTERFACE 

In the following text, we consider a sinusoidal shaped interface. This is convenient both for 
imposing the profile of phase fraction and for developing linear analysis. In the case of a small 
amplitude 2-D wave, the interfacial stress perturbations are theoretically and experimentally given 
by their amplitude and phase shift. 

The analysis that is proposed in this paper is restricted to a separated two-phase flow pattern. 
The shape of the gas-liquid interface will be purely sinusoidal. It is based on the assumption of 
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a slow varying dominant 2-D wave. In the 2-D wave stratified flow pattern, the wave energy 
spectrum shows the appearance of  a characteristic dominant wave. The turbulent gas flow over 
the waves generates ripples; their wavelengths are smaller in comparison to the dominant wave. 
Such a wave field will be considered as the superposition of  a dominant wave and smaller scale 
waves or ripples. The dominant wave will be represented by a sinusoidal monochromatic gravity 
wave (figure 1). 

Indeed, the dominant wave can be considered as slowly varying. The variations of the 
dominant wave are governed by non-linear energy transfer between wave components, van 
Gastel (1987) has shown that the time-scale t linked to these non-linear interactions can be 
estimated as: 

T 
t -  (ak)2 [21] 

where T stands for the period of the dominant wave. Given a dominant wave frequency of 10 Hz 
and a wave steepness of  10%, the previous relation gives t = 25 s. It is quite a large time scale; 
hence, the dominant wave can be thought of as slowly varying. This remark validates the idea of 
steady-state fully-developed stratified flow. 

In addition, Belcher and Hunt (1993) have estimated the growth time scale t ( k )  of  a wave of 
wave number k as: 

t ( k )  - PL C 2 1 
p c  V .2 c k  [22] 

Ripples have very large wave numbers; hence they grow on much smaller time scales than the 
dominant wave. Following Belcher and Hunt, we consider that the ripple field is in local 
equilibrium with the turbulent gas flow. These ripples will behave as roughness to the gas flow. 
One can refer to the Charnock (1995) formula to estimate the scale of  the ripples for a sheared 
gas flow corresponding to the friction velocity V*. 

Consequently, in this paper the 2-D wave field is composed of a given dominant wave over which 
ripples can be superimposed. The local and instantaneous position of the dominant shape of the 
interface, relative to the mean liquid thickness, is given by: 

= Re((e ~) = a cos ¢p [23] 

where ( or a is the amplitude of  the sinusoidal perturbation (real number) and ~o its phase. 
Given this shape, one can derive the vertical profile of  the liquid fraction: 

- a  < x 3 - hL < a [24] 

eL(X3)= 1 if - -a~>x3--hL and eL(X3)=0 if x 3 - - h L / > a  

The interest of such a shape is its simplicity. It will enable us to develop linear analysis. However, 
this shape corresponds to a discontinuous slope when x 3 -  hL = +a .  In addition, it must be 
emphasized that, given the mean level and the shape of  the wavy interface, it is possible to derive 
the volume fraction of each phase (see [24]). As we will see in the next part of this paper, this 
distribution must be compatible with the momentum balance. It seems important to indicate 
that, even if the two-fluid model enables us to calculate the profile of  the volume fraction of 
each phase, it is impossible to deduce the exact form of the wavy interface from this profile 
without any additional assumption on the phase distributions. 

Given this shape, any vertical position x3 will intercept the interface at well-defined instants. 
It corresponds to pairs of  events as shown in figure 1. For  small wave amplitude, slope and 
celerity, flow perturbations are calculated as linear responses to the sinusoidal boundary 
perturbation. In the frame of  linear analysis, the complex perturbations of pressure and viscous 
stresses will be taken both sinusoidally and phase shifted. The total stress can be expressed in 
pressure and viscous stress components. In addition, the viscous stress component is written in 
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terms of tangential and normal component along the interface. These expressions can be written 
as follows: 

P =  (P~) + Re(P) with P =  I/~le '(~+°P) [25a] 

r~t = (zl)  + Re(g,) with f, = I~,le "~+°° [25b1 

z; = (¢ . )  + Re(fn) with fn = I~.1 e"~+°o~ [25c] 

where the first bracketed terms are averaged along the interface and the second bracketed 
values with tilda terms are the complementary perturbations induced by the wavy surface, I/~l, 
[~tl and [i.I are the moduli of these pressure, tangential and normal viscous stress perturbations 
and 0p, 0, and 0n their phase shifts respectively. 

If the normal component of the stress perturbation is either in phase or out of phase with the 
sinusoidal boundary, each pair of events will have a null contribution to the longitudinal balance 
equation. On the contrary, any phase shift between the normal stresses and the sinusoidal boundary 
will lead to a non-zero term of interfacial transfer of momentum. 

Figure 2 shows the contribution of the wavelength averaged interfacial pressure (P~) to the 
momentum balance equation. The two longitudinal components are equal in amplitude and 
opposite in sign; their horizontal resultant is null; it does not contribute to the longitudinal 
momentum balance. The two vertical components are equal in amplitude and have the same sign; 
their vertical resultant is not null; it contributes to the vertical momentum balance. 

Figure 3 shows the contribution of the wavelength averaged interfacial tangential shear stress 
(z',) to the momentum balance. The two longitudinal components are equal in amplitude and have 
the same sign; their horizontal resultant is not null; it contributes to the longitudinal momentum 
balance. The two vertical components are equal in amplitude and opposite in sign; their vertical 
resultant is null; it does not contribute to the vertical momentum balance. 

Figure 4 shows the contribution of the perturbed interfacial pressure variation P to the 
momentum balance. The two longitudinal components are generally not equal in amplitude 
but can have the same sign; their horizontal resultant is generally not null; it can contribute to 
the longitudinal momentum balance. The two vertical components are generally not equal in 
amplitude but can have the same sign; their vertical resultant is generally not null; it can contribute 
to the vertical momentum balance. 

T 
<p i> 

A B 

2 identical vertical ~ [ ~  ~I~/ c°mpOnents 

2 opposite'horizontal components 
Figure 2. Contribution of the wavelength averaged interracial pressure to the horizontal and vertical 

momentum balance. 
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Figure 3. Contribution of  the wavelength averaged interfacial shear stress to the horizontal and vertical 
momen tum balance. 

In the literature, a large amount of data has been presented for the case of single phase flow 
over a sinusoidally shaped solid boundary. Consider first these results. 

Zilker and Hanratty (1979) review the data over stationary sinusoidal waves. The analysis of 
the results shows that the modulus of the tangential viscous stress perturbation (Abrams 1984) is 
at least one order of magnitude smaller than the pressure perturbation one. The cosine and sine 
functions being bounded by _+ 1, the tangential term will play a minor role compared to the pressure 
term in the longitudinal momentum balance. From a physical point of view, it is clear that basically 
the viscous effects are responsible for the phase shift of the pressure perturbation; in the case of 
inviscid fluid, one can derive analytically that the pressure perturbation is exactly out of phase with 
the boundary perturbation. A phase shift of 180 ° was obtained by Helmholtz (1868) for inviscid 
fluid flow. 

Benjamin (1959) accounted for the non-uniform velocity profile and viscosity. The study 
considered a viscous fluid flowing at a velocity V~, above a sinusoidally shaped wall (amplitude a 
and wavenumber k). The derived expressions can be written as shown: 

I Plcos(0p) -- b(kx, Re, )akp V:~ [26a] 

IPlsin(0p) = s(kx, Re~)akp V2~ [26b] 

where s is a sheltering coefficient introduced a long time ago by Jeffreys (1925). Benjamin (1959) 
showed that the sheltering coefficient depends on kx, where x is the abscissa in the developing 
boundary layer and on the Reynolds number Re = xV~/v. One can easily deduce from these 
expressions the amplitude and phase shift of the pressure perturbation. 

In order to better account for the effect of turbulence, several numerical codes have 
been developed. In the frame of the linear analysis, it is possible to express the equations of 
the perturbed motion in terms of a modified Orr-Sommerfeld equation (Abrams 1984, 
Lopez 1994). The numerical solution of the problem gives the perturbed velocity and pressure 
fields. One can then derive the pressure and viscous stress perturbations at the boundaries. 
The weak point of these models remains however the modelling of the turbulence. Belcher 
et al. (1993) proposed a criteria on that the turbulence model must satisfy to correctly predict 
the perturbed flow with rapidly varying pressure gradient. The approach of Belcher (1990) 
based on the rapid distortion theory of turbulence should be applied to internal separated 
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T 
perturbed pressure 

phase shift 

~ ~ _ _ ~  ..p i.. 

A B 

I , /  2 positive and different 
tributions 

2 positive and different 
horizontal contributions 

Figure 4. Contribution of the perturbed interfacial pressure variation to the horizontal and vertical 
momentum balance. 

two-phase flows. In this view, the most promising way of research is probably related to 
direct numerical simulation and confirmation of results with particle image velocimetry 
measurements. 

Experimental data of  amplitude and phase shift of  pressure perturbation are also available 
in the case of  mechanically generated waves sheared by a gas flow (Shemdin & Hsu 1965, 
Papadimitrakis et al. 1986). 

4. CLOSURE PROBLEM OF I N T E R F A C I A L  TRANSFER IN WAVY SEPARATED 
TWO-PHASE FLOWS 

In this part, we derive the exact form of the perturbed pressure contribution to the interfacial 
transfer of  momentum.  We propose to express this interfacial transfer in terms of  a form 
drag coefficient. This coefficient is correlated using experimental data for the amplitude and phase 
shift of  the pressure variations above solid wavy walls and a wavy gas-liquid interface. 
We then return to the local two-fluid model of  separated two-phase flow. Assuming fully-developed 
and steady-state flow conditions, we show how to determine the phase distribution from the 
momentum balance. However, it is important  to note that it does not give the exact form of 
the interface. 
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4.1. Interfacial momentum transfer due to the pressure f luctuations 

Given the preceding definitions, the interfacial momentum transfer terms of the longitudinal 
momentum balance equation can be analytically expressed. Considering the dominant role of  the 
term related to the pressure perturbations, we will focus on it. After certain mathematical 
manipulations, it can be shown that: 

Pff,6~(x3) = - ~  [Plsin(0D 1 if - a  < x3 - hL < a [27] 

It is clear that in the frame of our assumptions, the pressure term vanishes when it is in phase or 
out of  phase with the boundary perturbation. The normal viscous stress behaves identically. 
However, the tangential viscous stress term vanishes when it is quadratic with the boundary 
perturbation. It is important to highlight that only the imaginary part of the pressure perturbation 
appears in the expression of  the interfacial momentum transfer. 

It is interesting to average the momentum eq__ uation over the section of  the flow. In particular, 
the cross-averaged interfacial pressure term (zc k~ writes as: 

7rk--- r = _ a.__kk I Plsin 0p [28] 
2 

In addition, the cross-averaged interfacial term for the tangential viscous stress perturbation can 
be shown to be exactly equal to zero. Only the mean value of the shear stress averaged over the 
interface z k~ remains. Once more, the imaginary part of  the pressure perturbation appears in the 
interfacial momentum transfer term. 

We introduce a drag form coefficient defined as: 

ak lPlsin Op 
Co = 2 = ak 1 1151 sin 0p [291 

p 

2 

which is consistent with the form proposed by Be.njamin and Jeffreys presented below: 

CD = s(ak)  2 [30] 

Consequently, the closure problem on the interfacial momentum transfer can be equiv- 
alently expressed in terms of  the imaginary part of  the pressure (which needs to derive both 
the amplitude and the phase shift of the pressure perturbation) or in terms of a form drag 
coefficient. 

4.2. Strategy to close the pressure term 

The amplitude and the phase shift can be derived by solving the perturbed flow problem. 
Up to now, there remain many unknowns in the nature of the turbulence above and below 
the waves. Therefore, oversimplified turbulent modelling would lead to unphysical results. 

Consider the trend shown by the experimental values of  the amplitudes and phase shifts of the 
stress perturbations. Given the previously referred to experiments over a smooth solid wall 
sinusoidally shaped (amplitude a and wavenumber k), one can estimate from experiments the form 
drag coefficient: 

CD = ak 1 IPlsin 0p [31] 

The analysis must be restricted to small wave steepness, in order to obtain a linear response 
in the stress variations with a single harmonic. In addition, the gas flow must not separate 
from the downstream side of  the wavy wall. Considering that the wall is smooth and that the wave 
amplitude is small, one can estimate the friction factor f~moo,h by extrapolating the classical Blasius 
formula. In order to evaluate the respective weights of the friction and of the form drag, we 
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Figure 5. Experimental values of the ratio CD/f~oo,, vs ( a k )  ~- after Cook (1970), Kendall (1970), Zilker 
and Hanratty (1979). 

will evaluate the two coefficients. Transposing the approach of Belcher and Hunt (1993) to our 
problem, we have plotted in figure 5 the ratio CD/f~moot~ vs (ak) 2. It is interesting to note that for 
small wave steepness, the trend is linear. In addition, the magnitude of the form drag coefficient 
is two or three times the magnitude of the friction factor f~mooth. 

In the case of a wavy interface between gas and liquid, the problem is more complex. The wave 
is travelling at a celerity c. The characteristics of the dominant wave are unknown (amplitude a 
and wavenumber k). Ripples are generated at the surface of the wave and superimposed on the 
dominant wave, inducing a friction over a rough boundary (friction factor fR, the subscript 
denoting the roughness as well as the ripples). It seems reasonable to look for a drag coefficient 
as a function of the following non-dimensional groups: 

CD = CD(fR, ak, c/V*) [32a] 

Considering the results over a stationary solid wavy wall, we have plotted in figure 6 the 
ratio CD/fR/(ak) 2 vs c/V*, after the data of Shemdin and Hsu (1965). The values of the ratio 
c/V* after Shemdin and Hsu (1965) are large since their experiments were carried out in a 
large flume with mechanically generated gravity waves. In stratified flow in pipes, the ratio is much 
smaller. Extrapolating the experimental trend given in figure 6 leads to a relatively constant value 
of the ratio CD/fR/(ak) 2. This value is in agreement with the trend given by figure 5 for stationary 
waves. 

We propose the following quadratic dependence: 

CD = 14(ak)~f ~ [32b] 

Even if the friction factor can be related to a roughness scale given by a Charnock formula type, 
the problem remains open as long as the characteristics of the waves are not modelled. 

In this paper, we have assumed a sinusoidal shape interface [17]. It leads to an analytical 
expression for the vertical profile of the liquid fraction [18]. In the Appendix, the phase 
distribution is shown to be determined by a momentum balance equation. In a general model 
of  separated two-phase flow, [A6] enables us to calculate the vertical profile of the volume 
fraction of gas (or liquid) phase ~°(x3) = 1 - ~L(x3). However, the calculation of ~C(x3) is not 
sufficient to derive the shape of the gas-liquid interface. We have seen that a knowledge of 
both the shape and the stress distributions is required to calculate the interfacial transfer of 
momentum. 
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5. CONCLUSION 

Stratified flow is of importance in many industrial applications. In many previous works, the 
stratified flow has been considered as the superposition of two single-phase flows separated by a 
flat interface. It is pertinent when the liquid thickness is sufficiently large. However, when the liquid 
thickness decreases, the thickness of the wavy region cannot be neglected. Hence, a local two-fluid 
formulation is needed, the volume fraction of each phase decreasing continuously from 1 to 0 in 
the wavy region. 

In this scope, the present study has two main objectives: 

--first, the local two-fluid model of separated two-phase flow is formulated. The analysis focuses 
on momentum balance. Local momentum equations are written in a general form and 
discussed. It leads to a closure problem on interfacial momentum transfer. The cross-averaged 
momentum balance is also written in order to relate global and local approaches. The analysis 
of the set of equations of the local model shows that calculations of the velocity and pressure 
fields and phase distributions are required for the estimation of the interfacial term of 
momentum transfer. Basically, these terms contain the shape of the wave field and the 
distribution of the stresses at the interface; 

--second, we have restricted our attention to a 2-D wave field. It is considered as the 
superimposition of a slowly varying dominant wave and small wavelength ripples. The linear 
perturbation caused by the sinusoidal wavy interface on the gas flow is analysed in terms of 
pressure and viscous stress variations. These stress perturbations are sinusoidal and phase 
shifted. We have focused on the pressure term which is shown from experiments to play a 
dominant role. 

The drag coefficient was derived. It is related to the imaginary part of the pressure perturbation. 
The analysis of various experimental results shows that the form drag coefficient can be empirically 
correlated with a quadratic dependence with the wave slope. 

Two issues have not been addressed in this paper: 

- - the  mechanisms driving the generation of waves, their deformation and propagation have not 
been reviewed. Until now, there exists no model which is able to estimate this phenomenon. 
In a general model, the shape of the wavy interface given as a phenomenological relation must 
be compatible with the distribution of volume fraction of phase given by the solution of 
momentum balance [A6]; 
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--the turbulent fields above and below the waves have also not been reviewed. Rapidly varying 
conditions above the waves (Belcher & Hunt 1993) as well as non-linear interactions between 
wave induced flow and turbulence field below the waves (Lin6 et al. 1996) require refined 
modelling of the turbulence. 

Acknowledgements--The authors are greatly indebted to Elf Aquitaine Production for supporting this 
research. 
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APPENDIX A 

In order to simplify the discussion, we consider in this paragraph a fully-developed steady-state 
and quasi-parallel separated two-phase flow. It leads to a 1-D problem, the equations of the model 
being given by [17] and [18]. 

The two longitudinal momentum equation in [17] can be written for each phase. In fact, we can 
substitute into these two equations any linear combination of the longitudinal momentum equation 
of the mixture obtained by adding the two equations in [17]. It results in: 

c3(o~°P ° + 0{LP L) 

¢9x, 8x3 
- - (~GpGd-~LpC)g  l 

+ ( (P ' )  - (z~.))(npc5'+ nLc~ ~) -- (Z{)(tp6~+ tL6 ~) = 0 [All 

[6] gives: 

n~6 i = _ _ - -  O~° a n d  nLt~ i--- t~otL O0~G 
Ox, -0--~x~ = +~-7 '  hence n~'6'+ ~ = 0 

In addition, one can write: 

~ °  ~0~ L ~0{ O 
t p 6 i =  rt3°6i = ~-xx3 and tL6~= nLa~= --~-~x3 = +-77-_, hence t~6~+ tL6~= 0 

U~'(3 

Hence one obtains the classical momentum balance: 

63(gGP G q- 0~LP L) 63(0~G(l"~ + paR~)  + ~L(~'3L ' -Jr- pLRh) ) (ctap G + ctLpe)g, = 0 
3X~ + c~x3 - 

[A2] 

The second equation can be obtained similarly by eliminating the pressure gradient in [17]. 
Similarly, the two vertical momentum equations in [18] can be written for each phase. 

Once more, we can substitute into these two equations any linear combination. The vertical 
momentum equation of the mixture is obtained by adding the two equations in [18]. It results 
in: 

t~(~Gp-"~ + o~Lpe) G G--n--d" 0~LpL~3L3) 
__ 0(0~ p R33 + (0tGp ° + ~LpL)g3 = 0 [A3] 

Ox 3 8x3 

which can be written after integration: 

~(X3)  = ~ G p ~ +  ~t .p~ = _ otGpGR~333 + ~LpLR~333 _ (o~GpG + o~LpL)g3x 3 + CSt [A4] 

Eliminating the pressure gradient gives: 

_~ & ~  1 . , . .  a~ o 1 <~i>tTy~ _ ~ [ ~  _ ~n,,?a' - ~ 1  P Ox3 + pGg3 -- ~ ( ~  -- ( P ' )  + ~ "))  ~ -- 

1 - L 630~LRL 1 ~ 3o& 1 (zl)tL6~ 
= - - - f f £ [ ~  -- f"nL6~-- f ' tL6 ']+P OX3 + pLg3 -- ~-~(P -- ( e ' )  + (z~")) Ox3 e L 

[AS] 
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In fully-developed flow c o n d i t i o n s ,  one  can  write: 
0~ G 

G i t3 ~ = - - n G c  ~i . . . .  0 a n d  
c3x~ 

[A5] resul t s  in the  fo l l owing  a f te r  m a n i p u l a t i o n s :  

L L L __  ~ p R33) ~G~L (~(~ P R33 G G G 

c3x3 

~ L  
tL 6i = nL 6i = ~Xj -- 0 

~___ ~ 63~ 6 
+ C~Gc~L(p L --  p~)g3 + (~GpL + ~epG _ ( p , )  + (r~n)) c?x3 

+[i5n~6  ~ -  ?.n3G3 ~ -  ?,t~c5 ~] = 0 [A61 


